In vitro comparison of combustible vs. non-combustible tobacco products

Maurice Smith

July 1, 2013
PMI’s assessment strategy

<table>
<thead>
<tr>
<th>PMI’s assessment strategy</th>
<th>Reduced Population Harm</th>
<th>Reduced Exposure & Risk</th>
<th>Potential to Reduce Risk</th>
<th>Potential to Reduce Exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post-Market Studies & Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumer Perception and Behavior Assessment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical Trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>State-of-the-Art Toxicological Assessment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard Toxicological Assessment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerosol Chemistry and Physics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product Design and Control Principles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PMI RESEARCH & DEVELOPMENT
Non-clinical assessment

Product design, manufacturing and controls

- pMRTP* production is under control, meets required quality standards and consistently delivers according to specifications. It is then ready to enter the formal product assessment phase

Non-clinical evidence:

- Chemical analysis – for known and novel aerosol constituents
- Toxicological assessment - in cell systems and laboratory animals

To do what?

- Determine if the product is acceptable for:
 - Use by internal/external volunteer panels in support of product development
 - Clinical studies
 - Market Launch

*pMRTP ; prototype Modified Risk Tobacco Product
Sample preparation

• Conventional cigarette (CC) smoke or pMRTP aerosol is generated using a smoking machine operating to a standard smoking regime.

• The total particulate matter (TPM) is collected on a glass fiber filter (Cambridge filter) and extracted with DMSO for its application in NRU, Ames and MLA assay.

• The gas/vapor phase (GVP) passing through the Cambridge filter is collected by bubbling through an impinger containing ice-cold phosphate-buffered saline.
In vitro assessment

- **Cytotoxicity**
 - Neutral Red Uptake (NRU) assay according to the INVITTOX protocol No. 3a. Using mouse embryo BALB/c 3T3 cells

- **Bacterial cell mutagenicity**
 - Five strains of *S. typhimurium*: TA98; TA1537; TA100; TA1535; TA102 (in the presence and absence of rat S9 metabolic activation system according to OECD guideline 471)

- **Mammalian cell mutagenicity**
 - *In vitro* Mouse Lymphoma Assay (MLA) performed using L5178Y tk+/- cells according to OECD guideline 476
Objectives of the assessment

• To assess whether ‘heating instead of burning’ tobacco produces a much less complex aerosol resulting in a substantially reduced *in vitro* hazard potential

• To provide data for hazard characterization in a tiered assessment strategy

• To assess the pMRTP prior to its use in human studies in adult smokers
 – No increased or new hazard when compared to CC
In Vitro Data for a pMRTCP

Cell death substantially decreased compared to reference cigarette

Neutral Red Uptake Assay

- Conventional cigarette
- Platform 1 per mg nicotine

Cell death substantially decreased compared to reference cigarette.
In Vitro Data pMRTP

Cell mutation substantially decreased compared to conventional cigarette

Ames Assay

Mouse Lymphoma Assay

pMRTP and the reference cigarette 3R4F.
Summary and conclusions

• The reduced yield of HPHCs from the pMRTP compared to CC translates to:
 – Reduced cytotoxicity
 – Reduced mutagenicity in a bacterial cell system
 – Reduced mutagenicity in a mammalian cell system
• Results confirm reduced hazard potential of pMRTP compared to CC
• No indication of new cytotoxic or genotoxic hazards being introduced into the pMRTP
• Results cannot be used to measure human risk but form part of the evidence package in support of the overall assessment strategy