Peer-Reviewed Publications

      An electrophysiological characterization of naturally occurring tobacco alkaloids and their action on human α4β2 and α7 nicotinic acetylcholine receptors

      Alijevic, O.; McHugh, D.; Rufener, L.; Mazurov, A.; Hoeng, J.; Peitsch, M.

      Published
      Dec 19, 2019
      DOI
      10.1016/j.phytochem.2019.112187
      PMID
      31865001
      Topic
      Summary

      Nicotinic acetylcholine receptor (nAChR) subtype-selective pharmacological profiles of tobacco alkaloids are essential for understanding the physiological effects of tobacco products. In this study, automated electrophysiology was used to functionally characterize the effects of distinct groups of tobacco alkaloids on human α4β2 and α7 nAChRs. We found that, in tobacco alkaloids, pyridine as a hydrogen bond acceptor and a basic nitrogen atom at a distance of 4–7 Å are pharmacophoric elements necessary for molecular recognition by α4β2 and α7 nAChRs with various degrees of selectivity, potency, and efficacy. While four alkaloids—nicotine, nornicotine, anabasine and R-anatabine—potently activated α4β2, they were also weak agonists of α7 nAChRs. Nicotine was the most potent agonist of α4β2, while anabasine elicited the highest activation of α7. None of the tobacco alkaloids enhanced nAChR activity elicited by the endogenous ligand acetylcholine; therefore, none was considered to be a positive allosteric modulator (PAM) of either α4β2 or α7 nAChRs. In contrast, we identified tobacco alkaloids, such as the tryptophan metabolite 6-hydroxykynurenic acid, that decreased the activity of both α4β2 and α7 nAChRs. Our study identified a class of alkaloids with positive and negative effects against human α4β2 and α7 nAChRs. It also revealed human α4β2 to be the principal receptor for sensing the most abundant alkaloids in tobacco leaves.