In tobacco, the heavy metal P1B-ATPases HMA4.1 and HMA4.2 function in root-to-shoot zinc and cadmium transport. We present greenhouse and field data that dissect the possibilities to impact the two homeologous genes in order to define the best strategy for leaf cadmium reduction. In a first step, both genes were silenced using an RNAi approach leading to >90% reduction of leaf cadmium content. To modulate HMA4 function more precisely, mutant HMA4.1 and HMA4.2 alleles of a TILLING population were combined. As observed with RNAi plants, knockout of both homeologs decreased cadmium root-to-shoot transfer by >90%. Analysis of plants with segregating null and wild-type alleles of both homeologs showed that one functional HMA4 allele is sufficient to maintain wild type cadmium levels. Plant development was affected in HMA4 RNAi and double knockout plants which included retarded growth, necrotic lesions, altered leaf morphology and increased water content. The combination of complete functional loss (nonsense mutation) in one homeologous HMA4 gene and the functional reduction in the other HMA4 gene (missense mutation) is proposed as strategy to limit cadmium leaf accumulation without developmental effects.
PMIScience.com is operated by Philip Morris International for the purpose of publishing and disseminating scientific information about Philip Morris International’s efforts in support of its smoke-free product portfolio. This site is a global site for use by scientists, the public health and regulatory communities, and other stakeholders with an interest in tobacco policy. The purpose of this site is not advertising or marketing, nor is it directed at any specific market. It is not intended for use by consumers. New tobacco products sold in the United States are subject to FDA regulation; therefore the content of this site is not intended to make, and nor should it be construed as making, any product related claims in the United States without proper FDA authorization.
Reduced Risk Products ("RRPs”) is the term we use to refer to products that present, are likely to present, or have the potential to present less risk of harm to smokers who switch to these products versus continuing smoking. PMI has a range of RRPs in various stages of development, scientific assessment and commercialization. All of our RRPs are smoke-free products that deliver nicotine with far lower quantities of harmful and potentially harmful constituents than found in cigarette smoke.